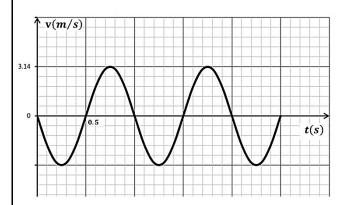

تمرین 1: باك 2009 رياضيات

 $k=20\,N/m$ يتشكل نواس مرن افقي من جسم نقطي (S) كتلته m ، مثبت إلى نابض مهمل الكتلة حلقاته غير متلاصقة ثابت مرونته

 $\overrightarrow{xx'}$ يمكن لـ (S) الحركة دون احتكاك على مستوي أفقي مزود بمحور،


مبدأه 0 ينطبق على وضع توازن (S) كما في الشكل . نزيح (S) عن

وضع توازنه في الاتجاه الموجب بمقدار X ، ثم نتركه لحاله دون سرعة ابتدائية دون سرعة ابتدائية . سمحت دراسة تجريبية بتسجيل حركة

. v = f(t) والحصول على مخطط السرعة (S)

- 2- بتطبيق القانون الثاني لنبوتن أوجد المعادلة التفاضلية للحركة .
 - 3- بالاعتماد على البيان عين كلا من:
 - الدور الذاتي T_0 للجملة المهتزة.
 - ω_0 النبض الذاتى –
 - m الكتلة سعة الاهتزاز X
 - . x = f(t) اكتب المعادلة الزمنية للحركة –
 - 4- أثبت ان طاقة الجملة محفوظة ، احسب قيمتها.

التمرين 2:

، k على ساق أفقية تخترقه ومثبتة بطرف نابض ثابت مرونته m=40g قابل للانزلاق دون احتكاك على ساق أفقية تخترقه ومثبتة بطرف نابض ثابت مرونته m=40g

 X_m نزيح الجسم عن وضع توازنه في الاتجاه الموجب بمقدار

البيان يمثل تغيرات الطاقة الحركية للجسم خلال الزمن:

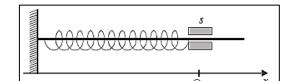
1- بتطبيق القانون الثاني لنيوتن اكتب المعادلة التفاضلية للحركة .

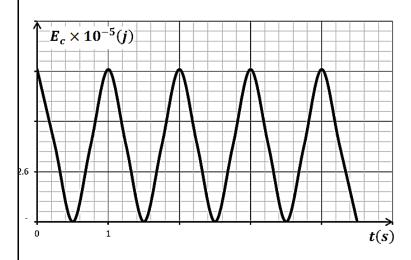
2- اعتمادا على البيان:

أ- حدد طبيعة الحركة .

 $\cdot X_m$ ب- قيمة المطال الاعظمي

. ω_0 ج- جد الدور الذاتي T_0 والنبض الذاتي

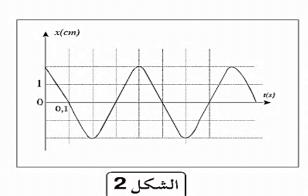

د- ثابت المرونة k للنابض.


. x = f(t) اكتب المعادلة الزمنية للحركة

v(t) استنتج عبارة السرعة -4

5- أعط عبارة الطاقة للجملة (جسم (S)+ نابض) وبين أنها ثابتة .

- احسب قيمتها.

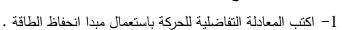

تمرین 3:

ر الشكل **1**

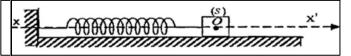
يمثل (الشكل1) جسما صلبا (S) كتلته m = 40g قابل للانزلاق على ساق أفقية مثبتة تخترقه ومثبت بطرف نابض مرونته k .

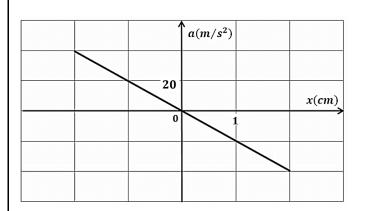
البيان المرفق (الشكل 2) يعطى تغيرات المطال x بدلالة الزمن t

- 1 اعتمادا على البيان عين:
 - أ نمط الاهتزازات .
- ب سعة الاهتزازات Xm
- $\mathbf{x} \mathbf{x} \mathbf{x}$ الدور الذاتي $\mathbf{x} \mathbf{x}$ و المرونة
- x = f(t) كتب المعادلة الزمنية للحركة -2
- (S) عبارة طاقة الجملة (نابض + جسم (S)) بدلالة (S) (S) وبين أنها ثابتة . باعتبار المستوى الأفقي المار بمركز عطالة الجسم (S) هو المستوى المرجعي للطاقة الكامنة الثقالية.
- 4 بالاعتماد على مبدأ إنحفاظ الطاقة، x(t) وجد المعادلة التفاضلية للحركة المحققة لـ x(t).


5 - بين أن الطاقة الحركية للجسم (S) في اللحظة t تكتب على الشكل:

$$E_c = \frac{1}{2} k(X_m^2 - x^2)$$


التمرين 4:


يمثل الشكل جسما صلبا (S) كتلته m=50g قابل للانزلاق دون احتكاك على مستوي افقي مرتبط بنابض ثابت مرونته k ، نزيح الجسم عن وضع توازنه في الاتجاه السالب بمقدار X_m .

. x البيان يمثل تغيرات التسارع a بدلالة المطال

- 2- اكتب المعادلة البيانية للمنحنى المعطى .
 - 3- اعتمادا على البيان:
 - X_m أ- قيمة المطال الاعظمي
- . T_0 والدور الذاتي ω_0 والدور الذاتي .
 - f_0 ج- احسب قيمة التواتر الذاتي
 - . x = f(t) اكتب المعادلة الزمنية للحركة -4
 - . a(t) و v(t) عبارة السرعة –5
 - a=f(t) ارسم المنحنى -6

